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Landauer equation in three-dimensional amorphous materials
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We use the Boltzmann transport equation to calculate the three-dimen&@nalersion of the Landauer
equation for incoherent electrons diffusing in a slab of amorphous material. We uBg #mproximation to
calculate the multiple-scattering transmission coefficient as a function of the diffusion coefficient. The 3D
transmission coefficient is, apart from numerical coefficients, similar to that for 1D. The result is valid only for
positions far away from the boundaries and for slabs having a thickness much greater than one mean free path.

PACS numbe(s): 05.60—k

I. INTRODUCTION Heref is the distribution of independentjonoenergetipar-
ticles moving in a homogeneous and isotropic medium. Elas-
One of the problems that has most attracted the attentiotic collisions are only against fixed targets. The constant
of solid state physicists in the past three decades is that @ipeed is denoted by and() is a unit vector in the direction
mesoscopic diffusion of electrons in nanostructures. Thi®f motion of the particles. X (' — ) denotes the macro-
process, due to the multiple scattering of electrons within &copic scattering cross section which, for amorphous materi-
solid, was first investigated by Landaur] who in 1957 als, is defined as the microscopic differential cross section
obtained for conduction electrons in a one-dimensighBl) multiplied by the density of target atoms. For isotropic scat-
solid his famous formula connecting the multiple-scatteringtering, = 4(Q)’ — Q) depends only on the deflection anglg
transmission coefficienT and the diffusion coefficienD,  between th&)’ and(} directions, that is, cog=Q-Q'. The
namely, quantity 2.=/dQ 2,(Q’'—Q) denotes the total macro-
scopic scattering cross section and defines the inverse of the
scattering mean free patBg=X\_ .
D=cLog, (2) Particularized to the 1D cagr axis), this transport theory
readily provides theexacttwo-stream theory in which the
right- and left-moving densities, denoted Hy(x,t) and

wherec is the Fermi. velocity for the glectrons_ ahdis the f,(x,t), respectively, satisfy the 1D transport equation
length of the 1D solid. For mesoscopic materials the coeffi-

cient T=1—R has all the fine coherent details of quantum 19 d
theory. — o+ =2 (fa— 1)), )
S cJat  ox

The quantum derivation of Eq1l) assumes that the po-

tentials are measured some distance away from the scatterers 19 o

and that this measurement is incoherent, which implies not ——— —|f,=3a(f1— 1), (4
o - L R

taking into account the interference of the incident and re-

flected waveq?2]. Th".’lt the Landauer equatidd) is not a  wherer denotes the microscopic single-scattering backward
fully coherent result is a fact that has long been recognlze%robab”ity. F=S(+——)/S=S(——+)/S. If this
. — “~s sT “s S*

by some authorf3—6]. . . .
. oBY . 1D theory is used to calculate the multiple-scattering trans-
What is striking is that the Landauer relation betwden mission ZoefficientT through a 1D solidpof length., %he

and D, which was originally quantum derived for mesos-

copic materials, is also valid for bulk materials. Once theexaCt result becomes the Landauer equation
interference is neglected, the Landauer re€blcan also be 2
derived with incoherent diffusive processes; as has been sz,
shown several times in the pd3t9]. The important differ-

ence is that in the macroscopic case the transmission coeffii,king clear that the Landauer result, for bulk materials, is
cientT is a fully incoherent property. both an incoherent and a 1D result. From this exact 1D case

One previous derivation of this Landauer result makes Usgye |eam that the Landauer equation describes a mesoscopic
of the Boltzmann transport equation free of external forcegime diffusive regimenon-Markovian, which for long times
[9]: correctly relaxes into the hydrodynamic regime.

Now if we take the three-dimension&D) case of the
transport equation the question is, does the 3D transmission
coefficient look similar to that in 1MLandauey or do we get
something different? The purpose of the present work is to
show that for an infinite slab of scattering material the 3D
transmission coefficient looks, apart from numerical coeffi-

®

10 .
——+Q-grag+ 2

C f(r,Q,t)

=f dQ'f(r,Q" H)S(Q —Q). (2)
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cients, similar to that in 1D. We use tig approximation to 9 w _

get the multiple-scattering coefficient. The result so obtained COSﬁﬁ—gf(fﬁ)Jrf(gﬂ): %f f(&,0")sine" do". (7)

is valid only for points in the material far away from the 0

boundaries. Another restriction for the validity of the result The solution of this differential-integral equation will enable
is that the length of the slab has to be much greater than ongs to determine any required property of the diffusing par-
mean free path. ticles.

Now suppose that the slab of scattering material is be-
tween the planez=0 andz=L=\£,. The incident distri-
bution fy(6) on the surfacez=0 penetrates into the slab,

Consider the diffusion along theaxis of incoherent par- gradually disappearing as its constituent particles get scat-
ticles through an infinite slakxy direction of material. As-  tered. The probability for such particles to survive a distance
sume that the incidence of particles is uniform over one surZ=\s¢ Without suffering a collision isfo(6)e™¢**%’. The
face of the slabthe z=0 plane, for instande Then the function fy(#) must be zero forr/2< 6<, for only this
distributionf is independent ok andy and depends only on "ange ofé corresponds to flow out of the slab. Another con-
z This example, first studied by Milne in connection with the ffiution tof(¢,6), the diffuse part, comes from rescattering
flow of light in a stellar atmosphere, is called Milne’s prob- IN the ¢ direction. Particles at distaneg having any another
lem[10,11]. Since the problem has azimuthal symmetry, thed!rect!on of motion, let us sag’, can b,e scattered into the
functionf depends only on the angkebetween the velocity direction and can travel freely fronf’ to £ The number
Q and thez axis; we can writef = f(z, 6,t). Assuming the scattered at distancg€ will be proportional to the density

steady-state condition, the transport equation becomes ~ P(¢ )=Jgf(¢",0")siné’ d’, and the number of such par-
ticles arriving at deptl at angled will be proportional to

p(&)e 1€ ~¢lsect, (8)

II. MILNE'S PROBLEM

J T
cosaﬁf(z,a)JrESf(z,a): %Sf f(z,6")sing’ do'.
0 where ¢' will be less than¢ if 6 is less thanm/2 (forward
©) scattering and greater thaéfor 6 larger thanm/2 (backward
scattering. Consequently, the solution of E) for f(¢&,6)

Measuring distances in units of the mean free pag#e/Ns  will have the general formf(&,60)="fc+fqr, explicitly
=73, this equation becomes given by

& , T
fo(@)e ¢secft 1 secef p(&He (E-éisecdqyr - o< <>
0

f(£,0)= ; - 9
1 secﬁf p(&)et(E —secoger F<o=m.
)

Of course, this is not yet a solution, for we have not calcu- Ill. THE P; APPROXIMATION
lated the densityp. However, this expression isxact By
direct integration we can reformulate the differential-integral
Eq. (7) into Eq.(9), and show that the densip(&) satisfies
the integral equation

To derive the transmission coefficient from the exact in-
tegral equation$9) and(10) is a rather involved mathemati-
cal problem[12]. An easier and rather illuminating approxi-
mation to this problem is the so calld®, approximation,
which we describe next.

" . f (I;i)rst V'\[/I‘? ass?me, f(())r. sinprlicit)t/, t?att the.t;;/]ciiile.nttrt])eam
_ —&sec o 1 I on the surface=0 is of constant intensity/c (I is the
pl&)= Jo fo(0)e™ singdo-+ 3 Jo d¢’p(g") ir?cident flu and is all directed in the positive direction;
that is, fo(#)=(l/c) 5(1—cosd). Second, since the angular
f“ﬂegwy} (10) dependence of the functidnis only on the angled we can
1Y ' have, for the diffuse distribution, a Legendre series represen-
tation asf g¢(&,0) ==, (£) P|(cosh). The P, approxima-
tion requires for the diffuse distribution that onlly=0 and
This is an integral equation of standard type. Whignis | =1 are taken into account, that is,
infinite, the equation is said to be of the Weiner-Hopf type 1 3
[10]. The qdyantage of t_hls_lntegral fqrm.ulatmn. |s_th§t it f(g,0):(|/c)e*55(1—0050)+Epdif(f)PoJr Z—Jdif(f)Pl
shows explicitly the contribution of the incident distribution ¢
at the boundary. It also shows that the diffuse part of the 4.
distribution depends only on the densitywhich is a simpler
function than isf, for p depends only org and not oné. where the diffuse densityy: and fluxJgy; are defined as

X

) (11)
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T _ IV. TRANSMISSION COEFFICIENT
Pdif(f)EJO fqif(£,0)sin6 do,

Notice that in theP; approximationf(¢,6) is nearly in-
(120  dependent of the angle of direction of momentum; and for
_ 7 . this approximation to be valid the magnitude of the flg
‘]d”(g)_cfo fair( ¢, 6)cosfsing do. has to be considerably smaller than the dengijty. These
two requirements make thié, approximation valid as long
Under this P, approximation the steady-state Boltzmannas we do not require too much detail concerning the behavior

transport equatiofi7) becomes of pgir and Jg within a few free paths of the boundary.
Formula(17) is obviously inaccurate fof at the boundary
i % le é|p.+ dpd'f E\] 4o | P4+ =0 surfaces.
2c| dé¢ 0 dg e To find the transmission coefficient in a slab, the follow-

(13)  ing boundary conditions are requirg). we have an incident
beam at the bottom surfacé&=0, and (ii) we require no
incoming beam at the top opposite surfgge-cL/3D. Since

% the P, distribution f(¢&,0) is inaccurate at the boundary
surfaces, we will satisfy our requirements by asking the av-
erage of(),= cosé to satisfy the above boundary conditions.
(14 So, using theP, distribution f(&,6) given by Eq.(17), we
define the up- and down-moving fluxe3,(,J_) as follows.

d he up-moving flux is given by

The orthogonality of the Legendre polynomials implies that;
the transport equation splits into a closed system of tw
equations forp g and Jg :

3J git
dé

The first equation, which is exact, is just the steady-stat
continuity equation in the presence of a source distribution. o

As far as this part of the solution goes, the incident particles ‘J+(§)ECJ f(£,0)cosfsingde
atz=0 appear inside the slab, at the point where they suffer 0

their first collision, as though there were a source distribution

C dpdit
3 9t

=le™%, Jgr=-—

of strengthle ¢ inside the material. The second equation, —le §+ pai( £) — 2 dpd'f(g))_ (19
which is only an approximation to the exact flow, is Fick’s ' 3 dé
law and shows that the diffusion coefficiebtis given by
D=c/(33,). Similarly, the down-moving flux becomes
Both equations in(14) imply that the diffuse density yi
satisfies the diffusion equation with sources, J,(é)EcJ £(£,0)cosfsingdo
/2
d?p i 3l
=——e’f (15)
dé? c _C 2 dpgir(£)
¢ (pd.f@) I (20
or, explicitly,
30 Now the boundary conditions for our multiple-scattering
par(&)= —(AE+B—e %), (16)  transmission problem become
C

where the constant@\, B) are adjusted to fit the boundary J+(0)=1, J-(&)=0. @D
conditions at=0 and¢,=Ls. These two boundary conditions allow us to find the two con-

Therefore, in theP; approximation the distribution be- stants(A, B) found in the diffuse density, EGL6). We obtain
comes

1 1d _
f(£,0)=(1/c)e £a(1-c0S6) + 5 pus— Pt o5+, AT

2 d¢
17 1

wherepg; is given by Eq.(16). B= 33¢,+4
Since the total macroscopic cross secttncan be writ-

ten in terms of the diffusion CoeffiCielﬁSZ C/3D, then the Subs“tut'ng these two constants into Eq@) and (20), we

dimensionless length can also be rewritten in terms of the get an explicit expression for both fluxes in the range (0
diffusion coefficient as <¢<gy):

(e %0—5), (22)

———(2e %0+ 15¢,+ 10). (23

c —
£=73= o= (18) _ ¢ 15-3e7fo  20+15%

D’ IO = e e b (24

At this point we understand how we can generalize the Land- iy ¢

auer result. We can have not only the transmission coeffi- ;o) ) 4 o-ey 15-3e 0 15{p+4e 0
cient but the whole 3D distribution depending explicitly on - 3épt4 3épt4

the diffusion coefficient. (25
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Notice thatd, (§) is positive and]_(£) is negative, as they theory (5), the exponential should not appear at all in the

should be. final result. In the exact 1D approach, the diffuse contribu-
Now we can get the 3D multiple-scattering transmissiontion cancels the exponential of the incident contribution. The

coefficient, which is defined ab=J_(&p)/I. We obtain(in ~ exponential is then a mathematical consequence ofPthe

the P, approximation approximation. However, as we can immediately see, it has
—¢ —cL/3D no physical consequences.
°—e 0 _5-e We must understand that, since tRg distribution f is

= 3¢p+4  4+cL/D (26) inaccurate at the boundary surfaces, any results we get from

this approximation can be reliable only in space coordinates

Similarly for the reflection coefficierR=[J_(0)|/I, we get  far from the boundaries. ThR, approximation makes sense
Re1-T 27) only if the thickness of the slab is much greater than one

mean free pathB/c. The opposite implies that both bound-

showing that the conservation of mass is well satisfied. W&'ies are very close to each other, invalidating Fheresults

can verify this in another way: from both fluxéz4) and(25) at any intermediate position. Therefore, an implicit physical
restriction of theP; approximation is thafy> 1. In this case,

we have - i oo ) <
the exponential decay is negligible and we arrive at a similar
5—e %0 equation as for the 1D case,
IHOTI(O=1 37 =T, (28)

verifying that the total flux is indeed a constant. The total T= 4+cL/D’ L>3D/c, (29

flux must be the same either at the tdp) or at the bottom

[1(1—R)] boundary. or equivalently

Equation(26) is, in theP; approximation, the 3D equiva-

lent of the Landauer equation we have been looking for.

DZCL4R+1’ T<1. (30)

V. CONCLUSIONS

Why is that we have an exponential contribution expThis last restricted equation is the 3D result predicted by the
(— &) in the transmission coefficieri26)? This exponential P, approximation. As expected, for the same value of the
has its origin in the incident contribution in the exact integraltransmission coefficienT, the numerical value of the 3D
Eqg. (9). However, as we can clearly see in the exact 1Ddiffusion coefficient is less than the 1@andauey one.
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