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Landauer equation in three-dimensional amorphous materials

Salvador Godoy
Facultad de Ciencias, Universidad Nacional Auto´noma de Me´xico, México, 04510, Distrito Federal, Mexico

~Received 14 July 2000!

We use the Boltzmann transport equation to calculate the three-dimensional~3D! version of the Landauer
equation for incoherent electrons diffusing in a slab of amorphous material. We use theP1 approximation to
calculate the multiple-scattering transmission coefficient as a function of the diffusion coefficient. The 3D
transmission coefficient is, apart from numerical coefficients, similar to that for 1D. The result is valid only for
positions far away from the boundaries and for slabs having a thickness much greater than one mean free path.

PACS number~s!: 05.60.2k
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I. INTRODUCTION

One of the problems that has most attracted the atten
of solid state physicists in the past three decades is tha
mesoscopic diffusion of electrons in nanostructures. T
process, due to the multiple scattering of electrons withi
solid, was first investigated by Landauer@1# who in 1957
obtained for conduction electrons in a one-dimensional~1D!
solid his famous formula connecting the multiple-scatter
transmission coefficientT and the diffusion coefficientD,
namely,

D5cL
T

2R
, ~1!

wherec is the Fermi velocity for the electrons andL is the
length of the 1D solid. For mesoscopic materials the coe
cient T512R has all the fine coherent details of quantu
theory.

The quantum derivation of Eq.~1! assumes that the po
tentials are measured some distance away from the scatt
and that this measurement is incoherent, which implies
taking into account the interference of the incident and
flected waves@2#. That the Landauer equation~1! is not a
fully coherent result is a fact that has long been recogni
by some authors@3–6#.

What is striking is that the Landauer relation betweenT
and D, which was originally quantum derived for meso
copic materials, is also valid for bulk materials. Once t
interference is neglected, the Landauer result~1! can also be
derived with incoherent diffusive processes; as has b
shown several times in the past@7–9#. The important differ-
ence is that in the macroscopic case the transmission co
cient T is a fully incoherent property.

One previous derivation of this Landauer result makes
of the Boltzmann transport equation free of external for
@9#:

F1

c

]

]t
1V̂•gradr1SsG f ~r ,V,t !

5E dV8 f ~r ,V8,t !Ss~V8→V!. ~2!
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Heref is the distribution of independent,monoenergeticpar-
ticles moving in a homogeneous and isotropic medium. E
tic collisions are only against fixed targets. The const
speed is denoted byc, andV is a unit vector in the direction
of motion of the particles. Ss(V8→V) denotes the macro
scopic scattering cross section which, for amorphous ma
als, is defined as the microscopic differential cross sec
multiplied by the density of target atoms. For isotropic sc
tering,Ss(V8→V) depends only on the deflection angleu0
between theV8 andV directions, that is, cosu0[V•V8. The
quantity Ss[*dV Ss(V8→V) denotes the total macro
scopic scattering cross section and defines the inverse o
scattering mean free path,Ss[ls

21.
Particularized to the 1D case~x axis!, this transport theory

readily provides theexact two-stream theory in which the
right- and left-moving densities, denoted byf 1(x,t) and
f 2(x,t), respectively, satisfy the 1D transport equation

F1

c

]

]t
1

]

]xG f 15Ssr ~ f 22 f 1!, ~3!

F1

c

]

]t
2

]

]xG f 25Ssr ~ f 12 f 2!, ~4!

wherer denotes the microscopic single-scattering backw
probability: r[Ss(1→2)/Ss5Ss(2→1)/Ss . If this
1D theory is used to calculate the multiple-scattering tra
mission coefficientT through a 1D solid of lengthL, the
exact result becomes the Landauer equation~1!

T5
2

21cL/D
, ~5!

making clear that the Landauer result, for bulk materials
both an incoherent and a 1D result. From this exact 1D c
we learn that the Landauer equation describes a mesosc
time diffusive regime~non-Markovian!, which for long times
correctly relaxes into the hydrodynamic regime.

Now if we take the three-dimensional~3D! case of the
transport equation the question is, does the 3D transmis
coefficient look similar to that in 1D~Landauer! or do we get
something different? The purpose of the present work is
show that for an infinite slab of scattering material the 3
transmission coefficient looks, apart from numerical coe
7769 ©2000 The American Physical Society
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cients, similar to that in 1D. We use theP1 approximation to
get the multiple-scattering coefficient. The result so obtain
is valid only for points in the material far away from th
boundaries. Another restriction for the validity of the res
is that the length of the slab has to be much greater than
mean free path.

II. MILNE’S PROBLEM

Consider the diffusion along thez axis of incoherent par-
ticles through an infinite slab~xy direction! of material. As-
sume that the incidence of particles is uniform over one s
face of the slab~the z50 plane, for instance!. Then the
distribution f is independent ofx andy and depends only on
z. This example, first studied by Milne in connection with t
flow of light in a stellar atmosphere, is called Milne’s pro
lem @10,11#. Since the problem has azimuthal symmetry,
function f depends only on the angleu between the velocity
V and thez axis; we can writef 5 f (z,u,t). Assuming the
steady-state condition, the transport equation becomes

cosu
]

]z
f ~z,u!1Ssf ~z,u!5

Ss

2 E
0

p

f ~z,u8!sinu8 du8.

~6!

Measuring distances in units of the mean free pathj[z/ls
5zSs , this equation becomes
cu

ra

pe
it
n
th
d

t
ne

r-

e

cosu
]

]j
f ~j,u!1 f ~j,u!5 1

2 E
0

p

f ~j,u8!sinu8 du8. ~7!

The solution of this differential-integral equation will enab
us to determine any required property of the diffusing p
ticles.

Now suppose that the slab of scattering material is
tween the planesz50 andz5L[lsj0 . The incident distri-
bution f 0(u) on the surfacez50 penetrates into the slab
gradually disappearing as its constituent particles get s
tered. The probability for such particles to survive a distan
z5lsj without suffering a collision isf 0(u)e2j secu. The
function f 0(u) must be zero forp/2<u<p, for only this
range ofu corresponds to flow out of the slab. Another co
tribution to f (j,u), the diffuse part, comes from rescatterin
in theu direction. Particles at distancej8 having any another
direction of motion, let us sayu8, can be scattered into theu
direction and can travel freely fromj8 to j. The number
scattered at distancej8 will be proportional to the density
r(j8)[*0

p f (j8,u8)sinu8 du8, and the number of such par
ticles arriving at depthj at angleu will be proportional to

r~j8!e2uj82jusecu, ~8!

wherej8 will be less thanj if u is less thanp/2 ~forward
scattering! and greater thanj for u larger thanp/2 ~backward
scattering!. Consequently, the solution of Eq.~7! for f (j,u)
will have the general formf (j,u)5 f inc1 f dif , explicitly
given by
f ~j,u!55 f 0~u!e2j secu1 1
2 secuE

0

j

r~j8!e2~j2j8!secudy8, 0<u,
p

2

1
2 secuE

j0

j

r~j8!e1~j82j!secudj8,
p

2
,u<p.

~9!
in-
-
i-

m

r

en-
Of course, this is not yet a solution, for we have not cal
lated the densityr. However, this expression isexact. By
direct integration we can reformulate the differential-integ
Eq. ~7! into Eq. ~9!, and show that the densityr(j) satisfies
the integral equation

r~j!5E
0

p/2

f 0~u!e2j secu sinu du1 1
2 E

0

j0
dj8r~j8!

3F E
1

` dy

y
e2uj2j8uyG . ~10!

This is an integral equation of standard type. Whenj0 is
infinite, the equation is said to be of the Weiner-Hopf ty
@10#. The advantage of this integral formulation is that
shows explicitly the contribution of the incident distributio
at the boundary. It also shows that the diffuse part of
distribution depends only on the densityr, which is a simpler
function than isf, for r depends only onj and not onu.
-

l

e

III. THE P1 APPROXIMATION

To derive the transmission coefficient from the exact
tegral equations~9! and~10! is a rather involved mathemati
cal problem@12#. An easier and rather illuminating approx
mation to this problem is the so calledP1 approximation,
which we describe next.

First we assume, for simplicity, that the incident bea
f 0(u) on the surfacez50 is of constant intensityI /c ~I is the
incident flux! and is all directed in the positivez direction;
that is, f 0(u)[(I /c)d(12cosu). Second, since the angula
dependence of the functionf is only on the angleu we can
have, for the diffuse distribution, a Legendre series repres
tation asf dif(j,u)5( l 50

` f l(j)Pl(cosu). The P1 approxima-
tion requires for the diffuse distribution that onlyl 50 and
l 51 are taken into account, that is,

f ~j,u!.~ I /c!e2jd~12cosu!1
1

2
rdif~j!P01

3

2c
Jdif~j!P1

1¯ , ~11!

where the diffuse densityrdif and fluxJdif are defined as
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rdif~j![E
0

p

f dif~j,u!sinu du,

~12!

Jdif~j![cE
0

p

f dif~j,u!cosu sinu du.

Under this P1 approximation the steady-state Boltzma
transport equation~7! becomes

1

2c S dJdif

dj
2Ie2jD P01

1

2 S drdif

dj
1

3

c
Jdif1¯ D P11¯50.

~13!

The orthogonality of the Legendre polynomials implies th
the transport equation splits into a closed system of
equations forrdif andJdif :

]Jdif

dj
5Ie2j, Jdif.2

c

3

]rdif

]j
1¯ . ~14!

The first equation, which is exact, is just the steady-s
continuity equation in the presence of a source distributi
As far as this part of the solution goes, the incident partic
at z50 appear inside the slab, at the point where they su
their first collision, as though there were a source distribut
of strengthIe2j inside the material. The second equatio
which is only an approximation to the exact flow, is Fick
law and shows that the diffusion coefficientD is given by
D5c/(3Ss).

Both equations in~14! imply that the diffuse densityrdif
satisfies the diffusion equation with sources,

d2rdif

dj2 52
3I

c
e2j, ~15!

or, explicitly,

rdif~j!5
3I

c
~Aj1B2e2j!, ~16!

where the constants~A, B! are adjusted to fit the boundar
conditions atj50 andj0[LSs .

Therefore, in theP1 approximation the distribution be
comes

f ~j,u!.~ I /c!e2jd~12cosu!1
1

2
rdif2

1

2

drdif

dj
cosu1¯ ,

~17!

whererdif is given by Eq.~16!.
Since the total macroscopic cross sectionSs can be writ-

ten in terms of the diffusion coefficientSs5c/3D, then the
dimensionless lengthj can also be rewritten in terms of th
diffusion coefficient as

j5zSs5
c

3D
z. ~18!

At this point we understand how we can generalize the La
auer result. We can have not only the transmission coe
cient but the whole 3D distribution depending explicitly o
the diffusion coefficient.
t
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IV. TRANSMISSION COEFFICIENT

Notice that in theP1 approximationf (j,u) is nearly in-
dependent of the angle of direction of momentum; and
this approximation to be valid the magnitude of the fluxJdif
has to be considerably smaller than the densityrdif . These
two requirements make theP1 approximation valid as long
as we do not require too much detail concerning the beha
of rdif and Jdif within a few free paths of the boundary
Formula ~17! is obviously inaccurate forf at the boundary
surfaces.

To find the transmission coefficient in a slab, the follow
ing boundary conditions are required:~i! we have an incident
beam at the bottom surfacej50, and ~ii ! we require no
incoming beam at the top opposite surfacej05cL/3D. Since
in the P1 distribution f (j,u) is inaccurate at the boundar
surfaces, we will satisfy our requirements by asking the
erage ofVz5cosu to satisfy the above boundary condition
So, using theP1 distribution f (j,u) given by Eq.~17!, we
define the up- and down-moving fluxes (J1 ,J2) as follows.
The up-moving flux is given by

J1~j![cE
0

p/2

f ~j,u!cosu sinu du

5Ie2j1
c

4 S rdif~j!2
2

3

drdif~j!

dj D . ~19!

Similarly, the down-moving flux becomes

J2~j![cE
p/2

p

f ~j,u!cosu sinu du

52
c

4 S rdif~j!1
2

3

drdif~j!

dj D , ~20!

Now the boundary conditions for our multiple-scatterin
transmission problem become

J1~0!5I , J2~j0!50. ~21!

These two boundary conditions allow us to find the two co
stants~A, B! found in the diffuse density, Eq.~16!. We obtain

A5
1

3j014
~e2j025!, ~22!

B5
1

3

1

3j014
~2e2j0115j0110!. ~23!

Substituting these two constants into Eqs.~19! and ~20!, we
get an explicit expression for both fluxes in the range
<j<j0):

J1~j!~4/I !52e2j2
1523e2j0

3j014
j1

20115j0

3j014
, ~24!

J2~j!~4/I !51e2j1
1523e2j0

3j014
j2

15j014e2j0

3j014
.

~25!
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Notice thatJ1(j) is positive andJ2(j) is negative, as they
should be.

Now we can get the 3D multiple-scattering transmiss
coefficient, which is defined asT[J1(j0)/I . We obtain~in
the P1 approximation!

T5
52e2j0

3j014
5

52e2cL/3D

41cL/D
. ~26!

Similarly for the reflection coefficientR[uJ2(0)u/I , we get

R512T, ~27!

showing that the conservation of mass is well satisfied.
can verify this in another way: from both fluxes~24! and~25!
we have

J1~j!1J2~j!5I
52e2j0

3j014
5IT, ~28!

verifying that the total flux is indeed a constant. The to
flux must be the same either at the top~IT! or at the bottom
@ I (12R)# boundary.

Equation~26! is, in theP1 approximation, the 3D equiva
lent of the Landauer equation we have been looking for.

V. CONCLUSIONS

Why is that we have an exponential contribution e
(2j0) in the transmission coefficient~26!? This exponential
has its origin in the incident contribution in the exact integ
Eq. ~9!. However, as we can clearly see in the exact
n

e

l

l

theory ~5!, the exponential should not appear at all in t
final result. In the exact 1D approach, the diffuse contrib
tion cancels the exponential of the incident contribution. T
exponential is then a mathematical consequence of theP1
approximation. However, as we can immediately see, it
no physical consequences.

We must understand that, since theP1 distribution f is
inaccurate at the boundary surfaces, any results we get f
this approximation can be reliable only in space coordina
far from the boundaries. TheP1 approximation makes sens
only if the thickness of the slabL is much greater than on
mean free path 3D/c. The opposite implies that both bound
aries are very close to each other, invalidating theP1 results
at any intermediate position. Therefore, an implicit physi
restriction of theP1 approximation is thatj0@1. In this case,
the exponential decay is negligible and we arrive at a sim
equation as for the 1D case,

T.
5

41cL/D
, L@3D/c, ~29!

or equivalently

D.cL
T

4R11
, T,1. ~30!

This last restricted equation is the 3D result predicted by
P1 approximation. As expected, for the same value of
transmission coefficientT, the numerical value of the 3D
diffusion coefficient is less than the 1D~Landauer! one.
s
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